Using Variable Resolution Meshes to Model Tropical Cyclones in NCAR’s CAM General Circulation Model

Colin M. Zarzycki, Christiane Jablonowski
University of Michigan

AMS 30th Conference on Hurricanes and Tropical Meteorology
April 17th, 2012, Ponte Vedra, FL

Acknowledgements: Mark A. Taylor, Michael N. Levy, Sandia National Labs
Outline

Motivation

Model setup and overview

Short-term, seeded cyclone experiments

Year-long, aquaplanet climate runs

Summary
Tropical cyclones in GCMs

• Modeling of tropical cyclones in General Circulation Models (GCMs) historically difficult
 • Computing constraints -> low resolutions
 • Significant parameterization of sub-grid scale processes
 • Convection
 • Fluxes
• Higher resolution studies becoming more prevalent in hurricane research community
 • Many great examples during this week’s talks
Variable resolution feature recently implemented in NCAR Community Atmosphere Model (CAM) Spectral Element (SE) dynamical core.

CAM-SE scheduled to be default in next CESM.

Conforming refinement
- Every edge shared by only two elements.

Unstructured
- Domain not tiled in (i,j) fashion.

Static refinement
- Grid refined during initialization, does not follow atmospheric features.
CAM SE variable-resolution dycore

- Variable resolution feature recently implemented in NCAR Community Atmosphere Model (CAM) Spectral Element (SE) dynamical core
- CAM-SE scheduled to be default in next CESM
- Conforming refinement
 - Every edge shared by only two elements
- Unstructured
 - Domain not tiled in (i,j) fashion
- Static refinement
 - Grid refined during initialization, does not follow atmospheric features

Levy et al., PDES, 2010
CAM SE variable-resolution dycore

- Variable resolution feature recently implemented in NCAR Community Atmosphere Model (CAM) Spectral Element (SE) dynamical core
- CAM-SE scheduled to be default in next CESM
- Conforming refinement
 - Every edge shared by only two elements
- Unstructured
 - Domain not tiled in \((i,j)\) fashion
- Static refinement
 - Grid refined during initialization, does not follow atmospheric features

Levy et al., PDES, 2010
• Variable resolution feature recently implemented in NCAR Community Atmosphere Model (CAM) Spectral Element (SE) dynamical core

• CAM-SE scheduled to be default in next CESM

• Conforming refinement
 • Every edge shared by only two elements

• Unstructured
 • Domain not tiled in \((i,j)\) fashion

• Static refinement
 • Grid refined during initialization, does not follow atmospheric features

Levy et al., PDES, 2010
CAM SE variable-resolution dycore

- Variable resolution feature recently implemented in NCAR Community Atmosphere Model (CAM) Spectral Element (SE) dynamical core
- CAM-SE scheduled to be default in next CESM
- Conforming refinement
 - Every edge shared by only two elements
- Unstructured
 - Domain not tiled in (i,j) fashion
- Static refinement
 - Grid refined during initialization, does not follow atmospheric features

Levy et al., PDES, 2010
Variable resolution feature recently implemented in NCAR Community Atmosphere Model (CAM) Spectral Element (SE) dynamical core

CAM-SE scheduled to be default in next CESM

Conforming refinement
- Every edge shared by only two elements

Unstructured
- Domain not tiled in \((i,j)\) fashion

Static refinement
- Grid refined during initialization, does not follow atmospheric features

Variable resolution used for tropical cyclone studies in limited area models (LAMs), now apply this construct to GCMs.

-- Setup eliminates need for externally-forced and possibly numerically and physically inconsistent boundary conditions.
Short-term, seeded simulations

- **Analytically-derived, axisymmetric, weak, warm-core vortex** in hydrostatic and gradient wind balance on an aquaplanet ($T = 29^\circ C$) [{Reed and Jablonowski, 2011}]

- **CAM version 5.1.09, default CAM5 physics** (*parameterization scalability caveats apply!*)

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Grid spacing (equator) (km)</th>
<th>Analogous to...</th>
<th>Physics timestep (s)</th>
<th>Dynamics timestep (s)</th>
<th>Diff. coefficient (m4 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne15</td>
<td>222</td>
<td>2° x 2°</td>
<td>3200</td>
<td>640</td>
<td>1e16</td>
</tr>
<tr>
<td>ne30</td>
<td>111</td>
<td>1° x 1°</td>
<td>1600</td>
<td>320</td>
<td>1e15</td>
</tr>
<tr>
<td>ne60</td>
<td>55</td>
<td>0.5° x 0.5°</td>
<td>800</td>
<td>160</td>
<td>1e14</td>
</tr>
<tr>
<td>ne120</td>
<td>28</td>
<td>0.25° x 0.25°</td>
<td>400</td>
<td>80</td>
<td>1e13</td>
</tr>
</tbody>
</table>
Cyclone transition: coarse -> fine

- Important desirable property -> *satisfactory interaction of cyclone with transition region between different resolutions*
- Set up -> start with global ne15 (~2°) and refine x4 (fine = ne60 = ~0.5°) -> refine entire hemisphere
- Why? Simple refinement, transitioning along cubed sphere edges -> “aggressive” width
Cyclone transition: coarse -> fine

- Important desirable property -> *satisfactory interaction of cyclone with transition region between different resolutions*
- Set up -> start with global ne15 (~2°) and refine x4 (fine = ne60 = ~0.5°) -> refine entire hemisphere
- Why? Simple refinement, transitioning along cubed sphere edges -> “aggressive” width
Cyclone transition: coarse -> fine

- Important desirable property -> satisfactory interaction of cyclone with transition region between different resolutions
- Set up -> start with global ne15 (~2°) and refine x4 (fine = ne60 = ~0.5°) -> refine entire hemisphere
- Why? Simple refinement, transitioning along cubed sphere edges -> “aggressive” width

![Diagram showing grid transitions]
Cyclone transition: coarse -> fine

Initial vortex:
\(v = 20 \text{ m/s} \)
\(\text{RMW} = 250 \text{ km} \)

Difficulties: Ideally we’d compare cyclone vs. “control” -> virtually impossible given time scales used / lack of mesh transition analogs

850 mb wind speed (m/s)

Latitudinal cross section wind speed (m/s)
Cyclone transition: coarse -> fine

Initial vortex:
\[v = 20 \text{ m/s} \]
\[\text{RMW} = 250 \text{ km} \]

Key: Looking for relatively symmetric development; no stretching, no filamentation

850 mb wind speed (m/s)

Latitudinal cross section wind speed (m/s)
Cyclone transition: coarse -> fine

Initial vortex:
\[v = 20 \text{ m/s} \]
\[\text{RMW} = 250 \text{ km} \]

Key: Looking for relatively symmetric development; no stretching, no filamentation

850 mb wind speed (m/s)

Latitudinal cross section wind speed (m/s)
Cyclone transition: coarse -> fine

Initial vortex:
\[v = 20 \text{ m/s} \]
\[\text{RMW} = 250 \text{ km} \]

Key: Looking for relatively symmetric development; no stretching, no filamentation
Cyclone transition: coarse -> fine

Initial vortex:
\(v = 20 \text{ m/s} \)
\(\text{RMW} = 250 \text{ km} \)

Key: Looking for relatively symmetric development; no stretching, no filamentation

850 mb wind speed (m/s)

Latitudinal cross section wind speed (m/s)
Cyclone transition: coarse -> fine

Initial vortex:
$v = 20 \text{ m/s}$
$\text{RMW} = 250 \text{ km}$

Key: Looking for relatively symmetric development; no stretching, no filamentation

850 mb wind speed (m/s)

Latitudinal cross section wind speed (m/s)
Comparing “uniform” to “refined” meshes

• Compare idealized cyclone in A) traditional **uniform** ne60 (~0.5°) mesh to a B) ne15 mesh (~2°) with a 4x **refined** area (ne60, ~0.5°)

• Smaller refined region than hemisphere: analogous to size of north Pacific ocean
Comparing “uniform” to “refined” meshes

- Compare idealized cyclone in A) traditional **uniform** ne60 (~0.5°) mesh to a B) ne15 mesh (~2°) with a 4x **refined** area (ne60, ~0.5°)
- Smaller refined region than hemisphere: analogous to size of north Pacific ocean
Comparing “uniform” to “refined” meshes

• Compare idealized cyclone in A) traditional uniform ne60 (~0.5°) mesh to a B) ne15 mesh (~2°) with a 4x refined area (ne60, ~0.5°)
• Smaller refined region than hemisphere: analogous to size of north Pacific ocean
Comparing “uniform” to “refined” meshes

Day 5 - 850 mb wind speed (m/s)
Comparing “uniform” to “refined” meshes

Day 5 - 850 mb wind speed (m/s)
Comparing “uniform” to “refined” meshes

Day 5 - 850 mb wind speed (m/s)
Comparing “uniform” to “refined” meshes

Day 5 - 850 mb wind speed (m/s)

Day 10 - 850 mb wind speed (m/s)
Comparing “uniform” to “refined” meshes

Day 5 - 850 mb wind speed (m/s)

Day 10 - 850 mb wind speed (m/s)
Comparing “uniform” to “refined” meshes

Day 5 - 850 mb wind speed (m/s)

Day 10 - 850 mb wind speed (m/s)

• 194,402 elements (uniform) vs. 38,666 elements (refined) = ratio of 0.199 -> ideal scalability with SE dycore

• In reality? If full uniform mesh is equivalent to 1.0 “work units,” refined mesh produces essentially identical results with 0.201 “work units”
Comparing “uniform” to “refined” meshes

- 194,402 elements (uniform) vs. 38,666 elements (refined) = ratio of 0.199
 -> ideal scalability with SE dycore
- In reality? If full uniform mesh is equivalent to 1.0 “work units,” refined mesh produces essentially identical results with 0.201 “work units”
Year-long aquaplanet climate

- Use same refined mesh (~2° to ~0.5°) -> year-long aquaplanet climate
- Zonally-averaged SSTs, run for 14 months, discard first 2 as “spin-up”
- Simulation reaches steady state with features similar to observed climate system
- Provides **intermediate test** between short-term, deterministic studies (last few slides) and full-scale weather/climate simulations
Year-long aquaplanet climate

- Use same refined mesh (~2° to ~0.5°) -> year-long aquaplanet climate
- Zonally-averaged SSTs, run for 14 months, discard first 2 as “spin-up”
- Simulation reaches steady state with features similar to observed climate system
- Provides intermediate test between short-term, deterministic studies (last few slides) and full-scale weather/climate simulations
Year-long aquaplanet climate

- Use same refined mesh (~2° to ~0.5°) -> year-long aquaplanet climate
- Zonally-averaged SSTs, run for 14 months, discard first 2 as “spin-up”
- Simulation reaches steady state with features similar to observed climate system
- Provides **intermediate test** between short-term, deterministic studies (last few slides) and full-scale weather/climate simulations

Red dots are cyclone origins. Detected using Vitart *et al.*, (1997) (GFDL) technique
Year-long aquaplanet climate

- Use same refined mesh (~2° to ~0.5°) -> year-long aquaplanet climate
- Zonally-averaged SSTs, run for 14 months, discard first 2 as “spin-up”
- Simulation reaches steady state with features similar to observed climate system
- Provides intermediate test between short-term, deterministic studies (last few slides) and full-scale weather/climate simulations

Red dots are cyclone origins. Detected using Vitart et al., (1997) (GFDL) technique

Spontaneous generation of cyclones in high resolution mesh
Aquaplanet cyclone in refined mesh

- Further refinement from ne15 -> ne120 (~0.25°)
- Example of one storm formed in northern hemisphere
- Category 4/5 equivalent cyclone - MSP: 911 hPa, max near surface wind speed: ~75 m/s
- ~25 km resolution w/ computing power of globally-uniform 50 km model
Cyclone transition fine -> coarse

- Asymmetric mesh allows for development of TCs in southern hemisphere as well
- Pass out of mesh transition region as TCs, not extratropical systems
- No numerical error or wave reflection back into refined domain
- Cyclone expectedly weakens as grid spacing becomes larger
Summary

• Cyclones passing both in and out of mesh transition regions are well-maintained and expected storm intensity increases/decreases are observed when cyclones move into/out of refined areas.

• Identically-initialized ideal TCs can be simulated significantly more efficiently in a refined grid when compared to a globally-uniform grid of the same resolution.

• High resolution nests produce realistic TC structure and simulations are able to generate TCs without vortex seeds on an aquaplanet with regionally-refined nest.

• Careful refinement selection can provide a doubling (or more) of regional resolution for the same computational cost when compared to a globally-uniform model.

Thank you!